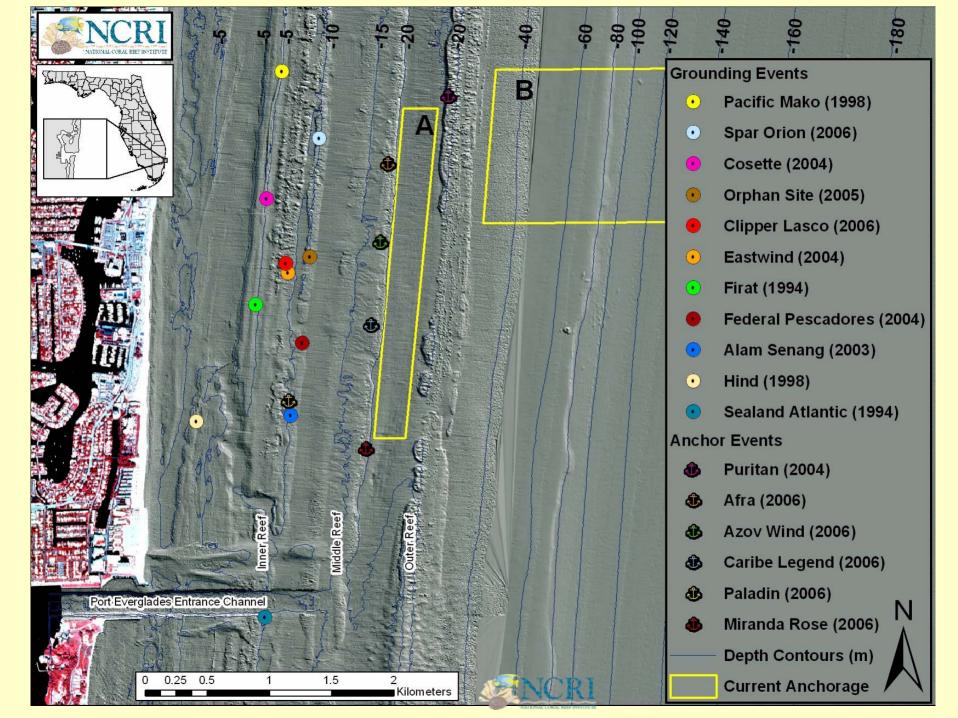
HABITAT EQUIVALENCY ANALAYSIS

Presentation for USCRTF October 24, 2006 Workshop

- Overview of Determining Compensationfor Coral Reef Injuries: A HabitatEquivalency Analysis Approach
- Richard Dodge, David Gilliam, Kevin Kohler, Brian Walker, Alison Moulding Nova Southeastern University Oceanographic Center National Coral Reef Institute
- Vladimir Kosmynin Florida Department Environmental Protection



HEA ⇒ A Method for Determining Compensation for Lost Natural Resources

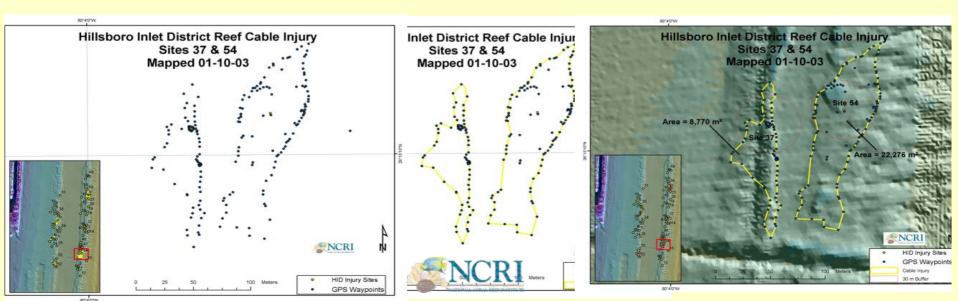

- Illustration: A coral reef is injured by a grounding (or a permitted activity); Injury area large
- The injured reef, *after Primary Restoration*, will take time (years) for recovery to return to its previous level of services. Hence services lost.
- <u>How much</u> of a <u>Compensatory Action</u> should there be to replace those lost services (in order to adequately compensate the Resource Trustee)?

Drawing Experience from:

- Broward County, Florida (and elsewhere)
- Grounding Capital of the US (you think you have it bad?)
- (Planned Reef Injury Capital possibly soon)

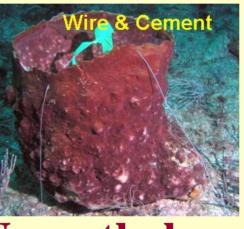
Reef Injuries from Groundings (or other) •Rubble, Reef Framework, Scraping, Crushing, & Killing Organisms

Crushed, Fractured, Overturned Hard Corals A few examples...



Ditto & Sheared Soft Corals & Sponges Dislodged Hard Corals

Managing the Challenge: Injury Assessment


- Survey reef injury areas
- Assessed severity
- Mapped injury areas using GPS
- Planar areas estimated

Triage & Primary Restoration: Rubble Stabilization, Framework Repair, Organism Reattachment

A few examples...

- Reef frame & organisms injured
- Time needed to recover
- <u>Resource Trustee desires (mandates)</u> <u>Compensation for its loss</u>

Addressing Amount of Compensation for Loss: Habitat Equivalency Analysis (HEA) can be a Useful Solution:

- <u>Determines</u>: <u>How much</u> of a <u>Compensatory</u> <u>Action</u> there should be to replace these lost services (in order to adequately compensate the Resource Trustee)
- HEA balances the services <u>lost and gained</u>
 over <u>TIME</u>.

HEA Principles

- Natural resources are viewed as <u>natural assets</u> <u>that provide services throughout lifetime</u>.
- Total value of such a natural asset = present value of the future stream of all services
 (<u>DISCOUNTED</u>) over time.
- Discounting is simply the willingness to pay <u>more</u> for something <u>now</u> than in the future.

Discounting is Key HEA Concept

- What would you rather have: \$1,000 today or \$1,000 in 1 year from now? (Most want it now!...because.....)
- 3% discount rate, \$1K 1year from now = only \$970!
- 10% discount rate, \$1K 1year from now = only \$900! !
- **Translating this into the HEA:**
- <u>Total</u> value of natural asset = (<u>present</u>) value of the <u>future stream of all services</u> (discounted) over time.

Basic Procedure of HEA

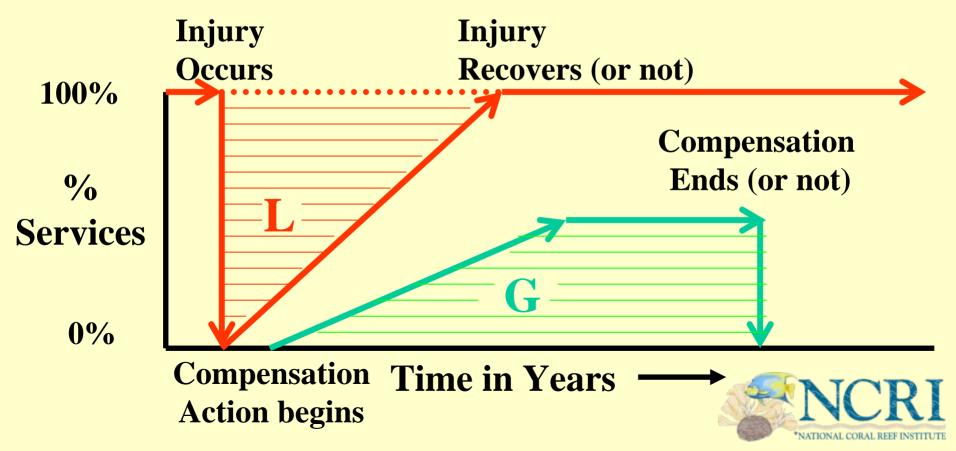
- <u>Assess the amount & degree of injury</u> to natural resources (after primary restoration).
- <u>Determine services lost</u> from injury until recovery or equilibrium state.
- <u>Decide on restoration action</u> (type or kind) and level of services to be gained (services provided over time).
- **DISCOUNT RATE** (time preference for value)
- From this, <u>HEA determines amount of that</u> <u>compensatory action to be created such that Services</u> <u>GAINED (provided by) the compensation over its</u> lifetime = services <u>LOST from the injury</u>.
- <u>Time history</u> of services & D.R.: critical.

HEA: Structured framework for providing & considering important biological parameters

INPUT

- Amount of Injury (area)
- Nature of Natural Recovery (Amount, Duration, & Shape)
- Nature of Compensatory Action (trajectory towards equilibrium, persistence)
- Ratio of Services
- Discount Rate (%)

OUTPUT

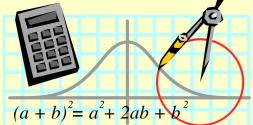

 Amount (area) of Compensatory Action (area) today to compensate for the loss of services of injury over time

Calculating Compensatory Habitat – How does it work?

L(OSS)= Total Services <u>(area-yr)</u> of Injured Area Lost from injury G(AIN)= Total Services <u>(area-yr)</u> Gained by compensatory action

Types of HEA

- Landscape:
 - Traditional method


- Uniform landscapes; little difference in biological functions across the injured area.
- Use keystone species, e.g., sea grass, A. palmata.
- **Population approach** (Milon and Dodge, 2001):
 - Injury area allocated into portions based on contribution of the organism / categories of interest.
 - Several, e.g., hard corals, gorgonians, sponges.
 - Individual HEA for <u>each</u> using its allocated area.
 - Results for each species (category) are summed.

Injury and Compensatory Action Parameters are critical to HEA results

Careful consideration needs to be given to:

- Amount (area) of injury
- Degree of injury to the biological services
- Over what time span and according to what trajectory will those services return to equilibrium
- Kind of compensatory action that is acceptable
- Service levels initially and over what duration
- Discount rate

HEA Formulations

• Formulas published by NOAA and others

Other variables	;
V_{j}	value per area-time of services provided by injured habitat
V_p	value per area-time of services provided by replacement habitat
x_t^j	level of services provided by injured habitat at end of time <i>t</i>
b^{j}	the pre-injury baseline level of services per area of injured habitat
x_t^p	level of services provided by replacement habitat at end of time <i>t</i>
b^p	initial level of services per area of replacement habitat
ρ_t	discount factor, where $\rho_t = 1/(1+r)^{(t-C)}$, r=discount rate per time unit
J	number of injured area units
Р	size of compensatory replacement project

Time variables						
t = 0	Time when injury occurs					
t = B	Time when injured area recovers to baseline levels					
t = C Time when the claim is presented						
t = I	Time when the habitat project begins to provide services					
t = M	Time when the habitat replacement project reaches full maturity					
t = L Time when the habitat replacement stops yielding services						
Calculated quant	ities					

Calculated quar	lculated quantities			
$\left(b^{j}-x_{t}^{j} ight)$	Extent of injury at time t			
$\left(x_{\star}^{p}-b^{p}\right)$	Increment in services provided by			
(1)	replacement project			
$\left(b^{j}-x_{t}^{j}\right)/b^{j}$	percent reduction in services per			
(, , ,	area for injured area, relative to the			
	injury site baseline level of services			
$\left(x_t^p - b^p\right)/b^j$	percent increase in services per area			
	for replacement site, relative to the			
	injury site baseline level of services			

NATIONAL CORAL REEF INSTITUTE

Somewhat formidable

HEA Software to Assist: Visual_HEA

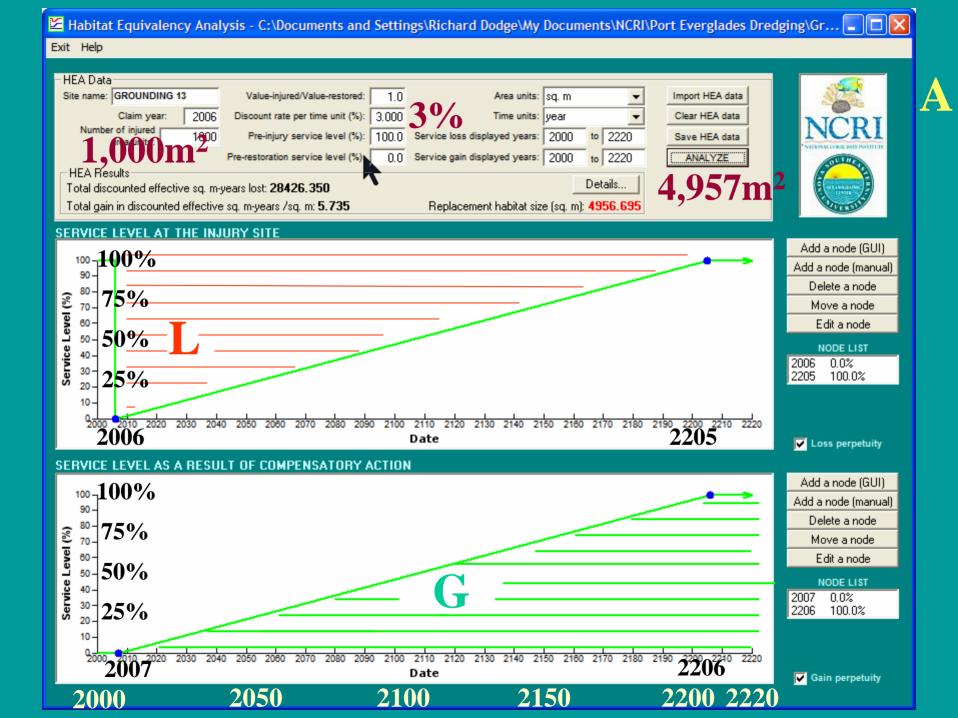
- Kohler, K.E. and R.E. Dodge 2006. Visual_HEA: Habitat Equivalency Analysis software to calculate compensatory restoration following natural resource injury. Proceedings of the 10th International Coral Reef symposium. Okinawa, Japan. pp. 1611-1616.
- Facilitates the complex HEA calculations
- Free for non-commercial use (Spanish version available)
- GUI (Graphical User Interface)
- Full time histories of input/output services
- Allows quick examination of alternate scenarios
- Used in_our Illustration: $\Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow$

For more information on Visual_HEA, visit www.nova.edu/ocean/visual_hea/

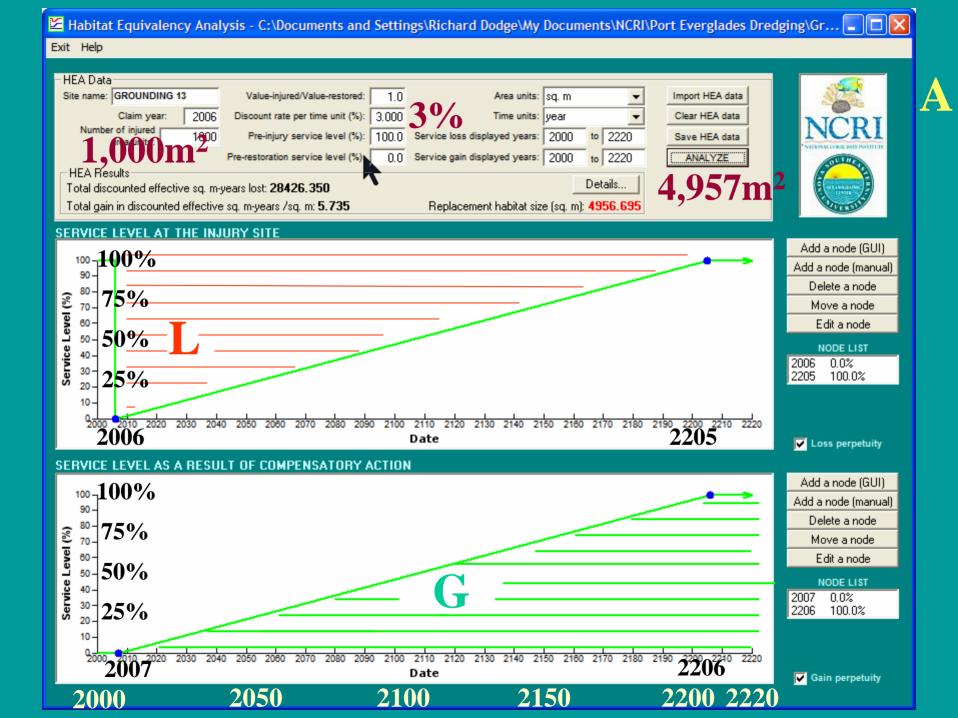
Illustration (Scenario A)

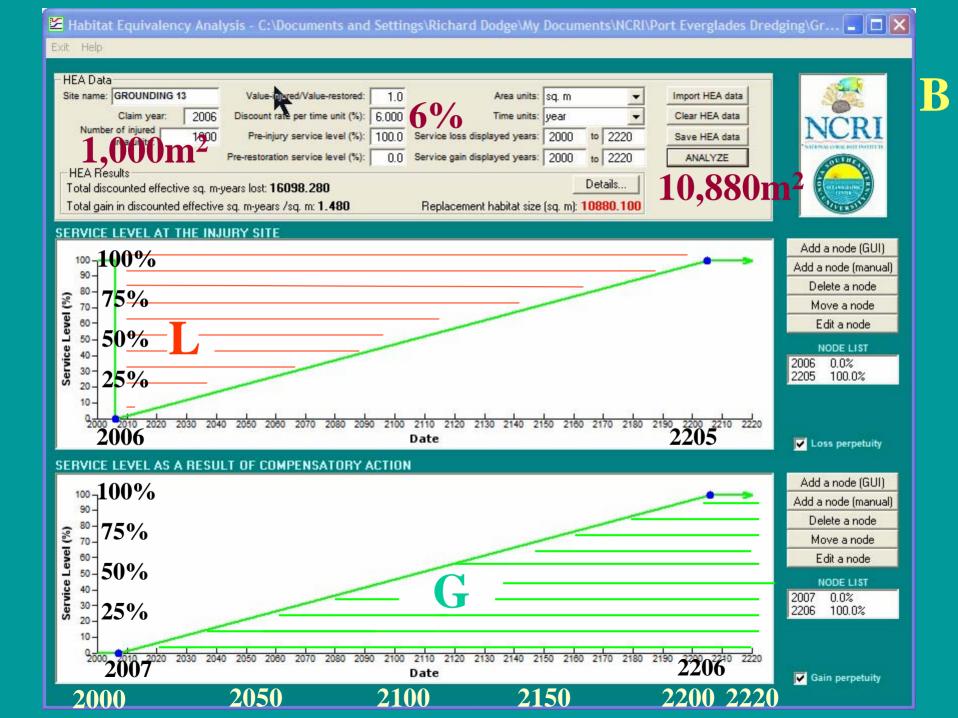
Injury Parameters:

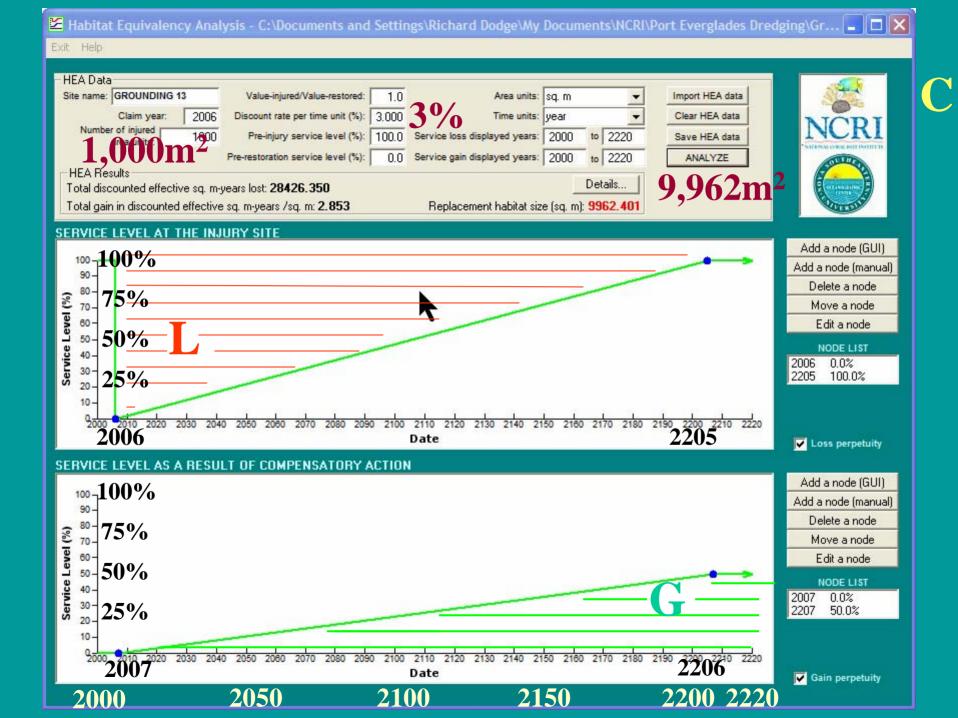
Lost Services (after Primary Restoration)

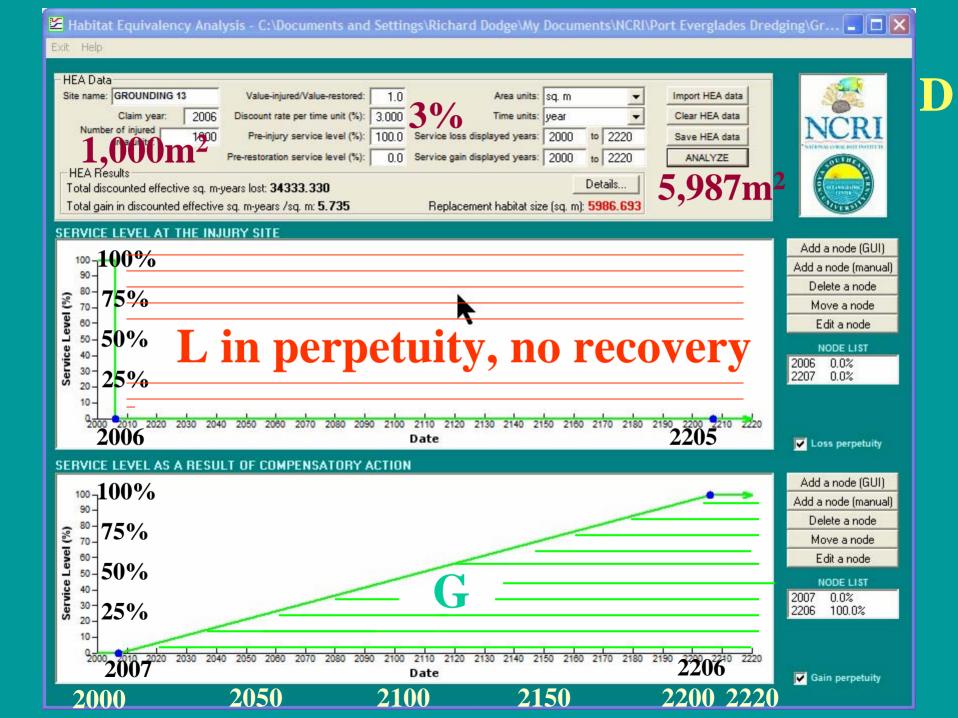

(Landscape e.g., Hard Corals)

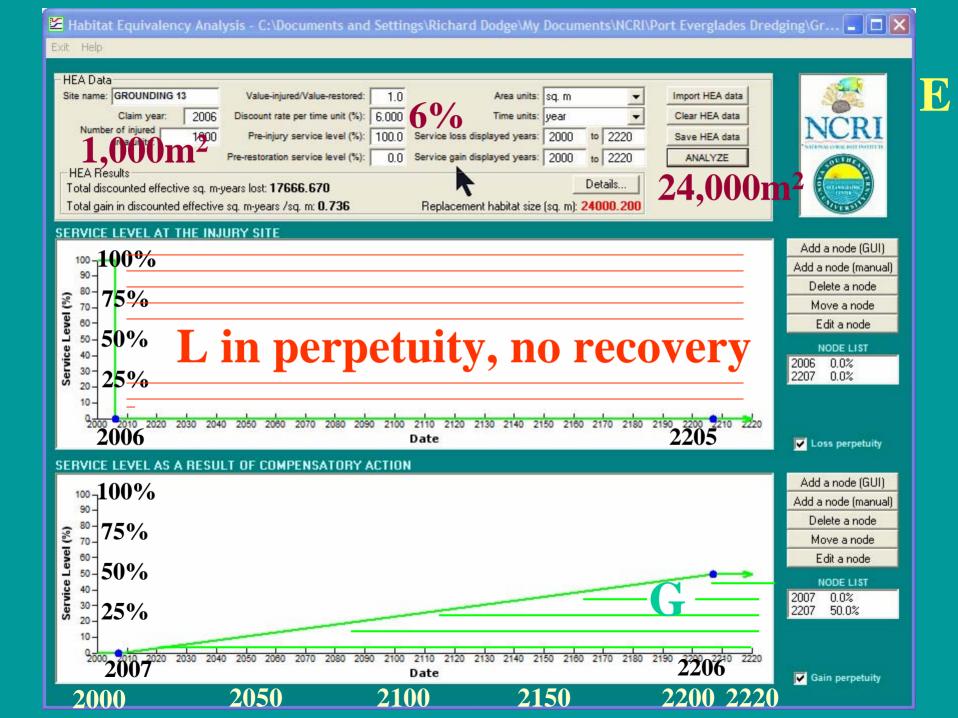
- 1,000 m² (.25 acres) total reef impact (some framework)
- all organisms destroyed
- 200 year recovery, linear, 3% discount rate


Compensatory Restoration Parameters: Gained Services (depends on choice) •100% of the biological services of original •200 years to reach equilibrium biological services •Linear recovery, 3% discount rate






HEA Parameters: Landscape Results


Scenario	Α	В	С	D	Е
INJURY Parameters					
Start Year	2006	2006	2006	2006	2006
Amount of Injury (m2)	1,000	1,000	1,000	1,000	1,000
Recovery (Years)	200	200	200	never	never
Recovers to ?% full services	100%	100%	100%	0%	0%
COMPENSATION Parameters					
Start Year	2007	2007	2007	2007	2007
Reaches ?% full services	100%	100%	50%	100%	50%
Time to Equilibrium (years)	200	200	200	200	200
DISCOUNT RATE	3%	6%	3%	3%	6%
Compensation Amount (m2)	4,957	??	??	??	??

HEA Parameters: Landscape Results

Scenario	Α	В	С	D	Е
INJURY Parameters					
Start Year	2006	2006	2006	2006	2006
Amount of Injury (m2)	1,000	1,000	1,000	1,000	1,000
Recovery (Years)	200	200	200	never	never
Recovers to ?% full services	100%	100%	100%	0%	0%
COMPENSATION Parameters					
Start Year	2007	2007	2007	2007	2007
Reaches ?% full services	100%	100%	50%	100%	50%
Time to Equilibrium (years)	200	200	200	200	200
DISCOUNT RATE	3%	6%	3%	3%	6%
Compensation Amount (m2)	4,957	10,880	9,962	5,987	24,000

What Works: HEA Utility

- HEA calculates <u>amount of compensatory area</u> due as a result of an injury.
- Allows <u>comparison</u> of <u>restoration alternatives</u> under multiple scenarios of injury recovery, service levels, and restoration type (speeded by software).
- Focuses on <u>reef processes</u>, services parameters, <u>not \$</u>.
- While \$ are important, reef biology, geology, and functionality dictate restoration considerations.
- HEA useful in direct and indirect use cases, e.g., lost services are biological uses: substrate, habitat, pollution sinks, wave breaks, habitat, etc.
- RT & RP agree on HEA & parameters

Lessons to be Learned:

- Early action primary restoration of injury resources avoids higher compensatory restoration requirements.
- HEA useful, calculates compensation scenarios, & focuses RT and RP on Reef Restoration as an necessary management tool.
- Discount Rate important. Not necessarily necessary to use "standard" 3%. Higher discount rate (pay me now) means higher compensation.

Recommendations

- HEA useful (but only as good as its input: GIGO)
- Compensatory Action tool
- Tool to focus RP and RT on correct input parameters, many of which are biological.

PAID

- Software allows easy calculation and scenario comparisons
- Goal: Achieve Optimal & Fair Compensation for Reef Injuries